171 research outputs found

    Evaluating Text-to-Image Matching using Binary Image Selection (BISON)

    Full text link
    Providing systems the ability to relate linguistic and visual content is one of the hallmarks of computer vision. Tasks such as text-based image retrieval and image captioning were designed to test this ability but come with evaluation measures that have a high variance or are difficult to interpret. We study an alternative task for systems that match text and images: given a text query, the system is asked to select the image that best matches the query from a pair of semantically similar images. The system's accuracy on this Binary Image SelectiON (BISON) task is interpretable, eliminates the reliability problems of retrieval evaluations, and focuses on the system's ability to understand fine-grained visual structure. We gather a BISON dataset that complements the COCO dataset and use it to evaluate modern text-based image retrieval and image captioning systems. Our results provide novel insights into the performance of these systems. The COCO-BISON dataset and corresponding evaluation code are publicly available from \url{http://hexianghu.com/bison/}

    Enhancing Domain Word Embedding via Latent Semantic Imputation

    Full text link
    We present a novel method named Latent Semantic Imputation (LSI) to transfer external knowledge into semantic space for enhancing word embedding. The method integrates graph theory to extract the latent manifold structure of the entities in the affinity space and leverages non-negative least squares with standard simplex constraints and power iteration method to derive spectral embeddings. It provides an effective and efficient approach to combining entity representations defined in different Euclidean spaces. Specifically, our approach generates and imputes reliable embedding vectors for low-frequency words in the semantic space and benefits downstream language tasks that depend on word embedding. We conduct comprehensive experiments on a carefully designed classification problem and language modeling and demonstrate the superiority of the enhanced embedding via LSI over several well-known benchmark embeddings. We also confirm the consistency of the results under different parameter settings of our method.Comment: ACM SIGKDD 201

    CondenseNet: An Efficient DenseNet using Learned Group Convolutions

    Full text link
    Deep neural networks are increasingly used on mobile devices, where computational resources are limited. In this paper we develop CondenseNet, a novel network architecture with unprecedented efficiency. It combines dense connectivity with a novel module called learned group convolution. The dense connectivity facilitates feature re-use in the network, whereas learned group convolutions remove connections between layers for which this feature re-use is superfluous. At test time, our model can be implemented using standard group convolutions, allowing for efficient computation in practice. Our experiments show that CondenseNets are far more efficient than state-of-the-art compact convolutional networks such as MobileNets and ShuffleNets

    Deep Neuroevolution of Recurrent and Discrete World Models

    Get PDF
    Neural architectures inspired by our own human cognitive system, such as the recently introduced world models, have been shown to outperform traditional deep reinforcement learning (RL) methods in a variety of different domains. Instead of the relatively simple architectures employed in most RL experiments, world models rely on multiple different neural components that are responsible for visual information processing, memory, and decision-making. However, so far the components of these models have to be trained separately and through a variety of specialized training methods. This paper demonstrates the surprising finding that models with the same precise parts can be instead efficiently trained end-to-end through a genetic algorithm (GA), reaching a comparable performance to the original world model by solving a challenging car racing task. An analysis of the evolved visual and memory system indicates that they include a similar effective representation to the system trained through gradient descent. Additionally, in contrast to gradient descent methods that struggle with discrete variables, GAs also work directly with such representations, opening up opportunities for classical planning in latent space. This paper adds additional evidence on the effectiveness of deep neuroevolution for tasks that require the intricate orchestration of multiple components in complex heterogeneous architectures
    corecore